Facile Synthesis of Ophipogonin C' and its Three Analogues

Shu Jie HOU, Chuan Chun ZOU, Liang ZHOU, Ping Sheng LEI*, De Quan YU
Institute of Materia Medica, Peking Union Medical College \& Chinese Academy of Medical Sciences, Beijing 100050

Abstract

Three natural diosgenyl glycosides: Ophipogonin $C^{\prime}(A)$, Polyphillin C (B), diosgenyl α-L-rhamnopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranoside (DRG) (C) and one of their analogue diosgenyl α-L-rhamnopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranoside (D) were first systemic synthesized in a facile way in high yields.

Keywords: Diosgenyl glycoside, glycosylation, levulinoyl group, L-rhamnopyranoside.

Among the huge number of glycoconjuates, the steroidal glycosides are often found as the major components in traditional Chinese medicine. Steroidal glycosides constitute a structurally and biologically diverse class of molecules which have been isolated from a wide variety of both plant and animal species ${ }^{1}$. Because of the variety of promising pharmaceutical properties ${ }^{2}$, the large family of steroidal glycosides has received considerable attention of chemist.

Figure 1

A. Ophipogonin C': $\mathrm{R}_{1}=\alpha$-L-rhamnopyranosyl, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=H$,
B. Polyphillin C: $\mathrm{R}_{2}=\alpha$-L-rhamnopyranosyl, $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
C. DRG: $\mathrm{R}_{3}=\alpha$-L-rhamnopyranosyl, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{H}$
D. $\mathrm{R}_{4}=\alpha$-L-rhamnopyranosyl, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

Ophipogonin $C^{\prime}(A)$ (Figure 1) is one of the cytostatic saponins isolated from Ophiopogon planiscapus ${ }^{3}$. Polyphyllin C (B) has been extracted from Pairs polyphylla ${ }^{4}$. Diosgenyl α-L-rhamnopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranoside (DRG) (C) exists widely in the plant kingdom including many species used in traditional Chinese herbal medicines which exhibt cardiovascular activity ${ }^{5}$. Recently strong anticancer activity of

[^0]DRG was reported ${ }^{6}$ by Cai et al. These three saponins share a common aglycon, diosgenin. The disaccharide chain begins with a β-D-glucopyranose and elongates through an α-L-rhamnopyranose in a different sequence.

In contrast to the difficulty in isolation of homogeneous saponins from plants, chemical synthesis would provide a realistic route to the availability of saponins. Ophipogonin C^{\prime} had been synthesized in our group ${ }^{7}$, but to our best knowledge that there were no reports about the synthesis of polyphyllin C and DRG. Herein we reported a facile way to synthesize the three saponins and one of their analogoues (D) in high yields.

Scheme 1

Reagents and conditions: a. NIS-TMSOTf, $-15^{\circ} \mathrm{C} 94 \%$; b. $1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOMe}$ in MeOH , reflux, 92%; c. (i) benzaldehyde dimethyl acetal, p-toluenesulphonic acid monohydrate, DMF $50^{\circ} \mathrm{C}$ under reduced pressure; (ii) levulinic acid, DCC, DMAP, 73% for 3; 12% for $4 ; 8 \%$ for 5 ; d. NIS-TMSOTf, $-30^{\circ} \mathrm{C} 97 \%$ for 6 and 95% for 7; e. (i) $80 \% \mathrm{HOAc}, 70^{\circ} \mathrm{C}$ (ii) $\mathrm{MeONa}-\mathrm{MeOH}, 87 \%$ for A and 89% for B

Using ethyl 2, 3, 4, 6-tetra- O-benzoyl-1-thio- β-D-glucopyranoside as donor to couple with diosgenin ${ }^{7}$, protected diosgenyl glycoside 1 was obtained. The hydrolysis of 1 gave the deprotected glycoside 2. Transformed 2 into diosgenyl 4, 6-O-benzylidene-β-D-glucopyranoside in 87% yield. It has been documented that it was quite difficult to selectively mask one of the hydroxyl groups of the 2, 3-diol of a D-glucopyranoside, especially when it was in the β-anomer ${ }^{8}$. However, we found that the levulinoyl group was regioselectively introduced by reaction of diosgenyl 4, 6-O-benzylidene- β-D-glucopyranoside with levulinic acid and DCC in the presence of a catalytic amount of DMAP. The desired compound $3-O$-Lev 3 was afforded in 73% yield, at the same time $2-O$-Lev product $4(12 \%)$ and 2, 3-di- $O-\operatorname{Lev} 5(8 \%)$ were also isolated from the reaction mixture.

NIS-TMSOTf mediate coupling of ethyl 2, 3, 4-tri- O-acetyl-1-thio- α-L-rhamnopyranoside with 3 and 4 gave corresponding 6 and 7. The two diosgenyl disaccharides were transformed into corresponding diosgenyl 2, 3, 4-tri- O-acetyl- α-L-rhamnopyranosyl$(1 \rightarrow 2)$-3-O-levulinoyl- β-D-glucopyranoside and diosgenyl 2,3,4-tri- O-acetyl- α-L-rhamno-pyranosyl-($1 \rightarrow 3$)-2-O-levulinoyl- β-D-gluco-pyranoside. Treatment of the two intermediates with sodium methoxide, followed by neutralization with Dowex-50W (H^{+}) ion-exchange resin gave ophipogonin $\mathrm{C}^{\prime}(\mathrm{A})$ and polyphyllin $\mathrm{C}(\mathrm{B})$ in the yields of 87% and 89% respectively (Scheme 1) .

Scheme 2

Reagents and conditions: a. $80 \% \mathrm{HOAc}, 70^{\circ} \mathrm{C}, 81 \%$; b. TBDMSiCl, imidazole, DMAP, DMF, 94%; c. (1). $\mathrm{Ac}_{2} \mathrm{O}$-pyridine, (2). $\mathrm{CAN}, \mathrm{MeOH}, 78 \%$ two steps; d. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$ under N_{2}, 69% for $11,75 \%$ for 12 ; e. $80 \% \mathrm{HOAc}, 70^{\circ} \mathrm{C}, 95 \%$; f. $\mathrm{MeONa}-\mathrm{MeOH}, 92 \%$ for C and 89% for D .

With compound 5 in hand, diosgenyl α-L-rhamnopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranoside (D) and DRG (C) were synthesized (Scheme 2). 5 was turned into 8 in a yield of 81%. Treatment 8 with TBDMSiCl and imidazole furnished 9 in a yield of 94%. Acetylation of $\mathbf{9}$ and then treatment with CAN produced 10 in a yield of 78% overall two steps. Glycosylation of $\mathbf{9}$ and $\mathbf{1 0}$ with 2, 3, 4-tri- O-acetyl-L-rhamnopyranosyl trichloroacetimidate provided protected diosgenyl disaccharides 11 and 12 in yields of 75% and 69% respectively. The TBDMS group of 11 was removed within 30 minutes in 95% yield. Removal of all the acyl groups with $1 \mathrm{~mol} / \mathrm{L}$ sodium methoxide, D and DRG were obtained in yields 89% and 92% respectively.

Acknowledgment

Financial support of this research by the National Natural Science Foundation of China (NNSFC 20372085) is gratefully acknowledged by the authors.

References and Notes

1. a). S. B. Mahato, A. N. Ganguly, N. P. Sahu, Phytochemistry, 1982, 21, 959. b). T. Ikeda, J. Ando, A. Miyazono, X. H. Zhu, et al., Biol. Pharm. Bull., 2000, 23, 364. c). L. C. Chang, T. R.Tsai, J. J. Wang, et al., Biochem. Biophys. Res. Commun., 1998, 242, 21.
. S. G. Sparg, M. E. Light, J. van Staden, Journal of Ethnopharmacology, 2004, 94, 219
. Y. Watanabe, S. Sanada, A. Tada, J. Shoji, Chem. Pharm. Bull., 1977, 25, 3049.
2. S. B. Singh, R. S. Thakur, H. R. Schulten, Phytochemistry, 1982, 21, 2925.
3. a). T. Kawaskai, T. Yamauchi, Chem. Pharm. Bull., 1968, 16, 1070.
b). T. R. Seshadri, S. Vydeeswaran, Indian J. Chem., 1972, 10, 377.
c). O. Espejo, J. C. Llavot, H. Jung, and F. Giral, Phytochemistry, 1982, 21, 413
4. S. L. Wang, B. Cai, C. B. Cui, et al., J. of Asian Nat. Prod.Res., 2004, 6, 115.
5. C. C. Zou, S. J. Hou, Y. Shi, P. S. Lei, X. T. Liang, Carbohy. Res., 2003, 338, 721.
S. J. Hou, C. C. Zou, P. S. Lei, D. Q.Yu, Chin.Chem. Lett., 2005, in press.
C. Li, B. Yu, M. Liu, Y. Hui, Carbohy. Res., 1998, 306, 189.
6. Data of compound \mathbf{A} was deposited in editorial office of CCL.
7. Spectral data of compounds \mathbf{B} to \mathbf{D} :

Compound B: Mp: $189-192^{\circ} \mathrm{C}$, (lit $[4] 185-190^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}^{25}-98.5$ (c 1.5 , pyridine), $\left[\operatorname{lit}[4][\alpha]_{\mathrm{D}}^{25}\right.$ -102 (c 0.6 , pyridine)]. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine $\left.-d_{5}, \delta \mathrm{ppm}\right): 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $4.4 \mathrm{~Hz}, \mathrm{H}-6), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1), 4.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 4.62-4.59$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.2,9.2 \mathrm{~Hz}), 4.53-4.34(\mathrm{~m}, 5 \mathrm{H}), 4.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{brs}$, $1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}$,
 ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}, \delta \mathrm{ppm}\right): 140.67,121.75,109.21,102.84,102.21,83.22$, $81.04,78.37,78.02,75.75,74.15,72.71,72.59,69.82,69.48,66.79,62.79,62.41,56.55$, $50.14,41.90,40.38,39.79,39.07,37.34,36.95,32.18(2 \times \mathrm{C}$, overlap), $31.74,31.55,30.55$, $30.08,29.21,21.04,19.33,18.71,17.31,16.34,15.03$. FAB-MS: $m / z 745(\mathrm{M}+\mathrm{Na})$, HRFAB-MS: $m / z 745.4171(\mathrm{M}+\mathrm{Na})^{+}$(calcd. for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{12} \mathrm{Na}, 745.4138$). Compound C: Mp: $230-233^{\circ} \mathrm{C}$, $\left(\operatorname{lit}[5] 230-231^{\circ} \mathrm{C}\right),[\alpha]_{\mathrm{D}}^{25}-92.40$ (c 1.0, pyridine), $\left[\operatorname{lit}[5][\alpha]_{\mathrm{D}}^{25}-89\right.$ (c 0.93 , pyridine)]. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}, \delta \mathrm{ppm}\right): 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{H}-6)$, $5.01(\mathrm{~m}, 1 \mathrm{H}), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{l}^{\prime}\right), 4.69(\mathrm{brs}, 1 \mathrm{H}), 4.58-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=9.6 \mathrm{~Hz}), 4.26-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}), 3.97(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 3.83(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}), 3.55(\mathrm{brs}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}$, $4 \mathrm{H}), 1.72\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 1.13(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}=4.2 \mathrm{~Hz}) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}, \delta \mathrm{ppm}\right): 140.85,121.73,109.24,102.68,102.44$, $81.07,78.25,78.19,75.13,76.70,75.53,74.00,72.82,72.63,70.35,66.84,62.87,61.50$, $56.53,50.25,41.95,40.44,39.85,39.28,37.42,37.03,32.24,32.17,31.79,31.62,30.58$, $30.18,29.24,21.10,19.38,18.54,17.31,16.35,15.02$ FAB-MS: $m / z \quad 745(\mathrm{M}+\mathrm{Na})$ HRFAB-MS: $m / z 745.4163(\mathrm{M}+\mathrm{Na})^{+}$(calcd. for $\left.\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{12} \mathrm{Na}, 745.4138\right)$. Compound \mathbf{D} : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , pyridine- $d_{5}, \delta \mathrm{ppm}$): 5.15 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), $5.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{H}-6)$, $4.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.64-4.48(\mathrm{~m}, 4 \mathrm{H}), 4.38-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.07-3.99$ $(\mathrm{m}, 3 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H})$, $1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.62\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 1.12(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H})$, $0.68(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}, \delta \mathrm{ppm}\right): 140.97$, 121.58, 109.23, $103.04,102.45,81.08,78.85,78.59,76.92,75.22,74.02,72.76,72.31,71.81,69.74,68.21$, $66.84,62.88,56.56,50.14,41.94,40.41,39.84,39.47,37.43,37.00,32.21,32.16,31.79$, $31.61,30.57,30.39,29.23,21.06,19.38,18.66,17.31,16.33,15.03$. HRMS: calcd. for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{12} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 745.4138$, found: 745.4176 .

Received 9 March, 2005

[^0]: *E-mail: lei@imm.ac.cn

